新聞動(dòng)態(tài)
2020-04-05
機(jī)器視覺(jué)是通過(guò)計(jì)算機(jī)來(lái)模擬人類(lèi)視覺(jué)功能,以讓機(jī)器獲得相關(guān)視覺(jué)信息和加以理解??煞譃椤耙暋焙汀坝X(jué)”兩部分原理。
“視”是將外界信息通過(guò)成像來(lái)顯示成數(shù)字信號(hào)反饋給計(jì)算機(jī),需要依靠一整套的硬件解決方案,包括光源、相機(jī)、圖像采集卡、視覺(jué)傳感器等?!坝X(jué)”則是計(jì)算機(jī)對(duì)數(shù)字信號(hào)進(jìn)行處理和分析,主要是軟件算法。
機(jī)器視覺(jué)在工業(yè)上應(yīng)用領(lǐng)域廣闊,核心功能包括:測(cè)量、檢測(cè)、識(shí)別、定位等。
產(chǎn)業(yè)鏈可以分為上游部件級(jí)市場(chǎng)、中游系統(tǒng)集成/整機(jī)裝備市場(chǎng)和下游應(yīng)用市場(chǎng)。
機(jī)器視覺(jué)上游有光源、鏡頭、工業(yè)相機(jī)、圖像采集卡、圖像處理軟件等軟硬件提供商,中游有集成和整機(jī)設(shè)備提供商,行業(yè)下游應(yīng)用較廣,主要下游市場(chǎng)包括電子制造行業(yè)、汽車(chē)、印刷包裝、煙草、農(nóng)業(yè)、醫(yī)藥、紡織和交通等領(lǐng)域。
機(jī)器視覺(jué)全球市場(chǎng)主要分布在北美、歐洲、日本、中國(guó)等地區(qū),根據(jù)統(tǒng)計(jì)數(shù)據(jù),2014年,全球機(jī)器視覺(jué)系統(tǒng)及部件市場(chǎng)規(guī)模是 36.7 億美元,2015年全球機(jī)器視覺(jué)系統(tǒng)及部件市場(chǎng)規(guī)模是42億美元,2016年全球機(jī)器視覺(jué)系統(tǒng)及部件市場(chǎng)規(guī)模是62億美元,2002-2016年市場(chǎng)年均復(fù)合增長(zhǎng)率為12%左右。而機(jī)器視覺(jué)系統(tǒng)集成,根據(jù)北美市場(chǎng)數(shù)據(jù)估算,大約是視覺(jué)系統(tǒng)及部件市場(chǎng)的6倍。
中國(guó)機(jī)器視覺(jué)起步于80年代的技術(shù)引進(jìn),隨著98年半導(dǎo)體工廠(chǎng)的整線(xiàn)引進(jìn),也帶入機(jī)器視覺(jué)系統(tǒng),06年以前國(guó)內(nèi)機(jī)器視覺(jué)產(chǎn)品主要集中在外資制造企業(yè),規(guī)模都較小,06年開(kāi)始,工業(yè)機(jī)器視覺(jué)應(yīng)用的客戶(hù)群開(kāi)始擴(kuò)大到印刷、食品等檢測(cè)領(lǐng)域,2011年市場(chǎng)開(kāi)始高速增長(zhǎng),隨著人工成本的增加和制造業(yè)的升級(jí)需求,加上計(jì)算機(jī)視覺(jué)技術(shù)的快速發(fā)展,越來(lái)越多機(jī)器視覺(jué)方案滲透到各領(lǐng)域,到2016年我國(guó)機(jī)器視覺(jué)市場(chǎng)規(guī)模已達(dá)近70億元。
機(jī)器視覺(jué)中,缺陷檢測(cè)功能,是機(jī)器視覺(jué)應(yīng)用得最多的功能之一,主要檢測(cè)產(chǎn)品表面的各種信息。在現(xiàn)代工業(yè)自動(dòng)化生產(chǎn)中,連續(xù)大批量生產(chǎn)中每個(gè)制程都有一定的次品率,單獨(dú)看雖然比率很小,但相乘后卻成為企業(yè)難以提高良率的瓶頸,并且在經(jīng)過(guò)完整制程后再剔除次品成本會(huì)高很多(例如,如果錫膏印刷工序存在定位偏差,且該問(wèn)題直到芯片貼裝后的在線(xiàn)測(cè)試才被發(fā)現(xiàn),那么返修的成本將會(huì)是原成本的100倍以上),因此及時(shí)檢測(cè)及次品剔除對(duì)質(zhì)量控制和成本控制是非常重要的,也是制造業(yè)進(jìn)一步升級(jí)的重要基石。
1.在檢測(cè)行業(yè),與人類(lèi)視覺(jué)相比,機(jī)器視覺(jué)優(yōu)勢(shì)明顯
1)精確度高:人類(lèi)視覺(jué)是64灰度級(jí),且對(duì)微小目標(biāo)分辨力弱;機(jī)器視覺(jué)可顯著提高灰度級(jí),同時(shí)可觀測(cè)微米級(jí)的目標(biāo);
2)速度快:人類(lèi)是無(wú)法看清快速運(yùn)動(dòng)的目標(biāo)的,機(jī)器快門(mén)時(shí)間則可達(dá)微秒級(jí)別;
3)穩(wěn)定性高:機(jī)器視覺(jué)解決了人類(lèi)一個(gè)非常嚴(yán)重的問(wèn)題,不穩(wěn)定,人工目檢是勞動(dòng)非??菰锖托量嗟男袠I(yè),無(wú)論你設(shè)計(jì)怎樣的獎(jiǎng)懲制度,都會(huì)發(fā)生比較高的漏檢率。但是機(jī)器視覺(jué)檢測(cè)設(shè)備則沒(méi)有疲勞問(wèn)題,沒(méi)有情緒波動(dòng),只要是你在算法中寫(xiě)好的東西,每一次都會(huì)認(rèn)真執(zhí)行。在質(zhì)控中大大提升效果可控性。
4)信息的集成與留存:機(jī)器視覺(jué)獲得的信息量是全面且可追溯的,相關(guān)信息可以很方便的集成和留存。
2.機(jī)器視覺(jué)技術(shù)近年發(fā)展迅速
1)圖像采集技術(shù)發(fā)展迅猛
CCD、CMOS等固件越來(lái)越成熟,圖像敏感器件尺寸不斷縮小,像元數(shù)量和數(shù)據(jù)率不斷提高,分辨率和幀率的提升速度可以說(shuō)日新月異,產(chǎn)品系列也越來(lái)越豐富,在增益、快門(mén)和信噪比等參數(shù)上不斷優(yōu)化,通過(guò)核心測(cè)試指標(biāo)(MTF、畸變、信噪比、光源亮度、均勻性、色溫、系統(tǒng)成像能力綜合評(píng)估等)來(lái)對(duì)光源、鏡頭和相機(jī)進(jìn)行綜合選擇,使得很多以前成像上的難點(diǎn)問(wèn)題得以不斷突破。
2)圖像處理和模式識(shí)別發(fā)展迅速
圖像處理上,隨著圖像高精度的邊緣信息的提取,很多原本混合在背景噪聲中難以直接檢測(cè)的低對(duì)比度瑕疵開(kāi)始得到分辨。
模式識(shí)別上,本身可以看作一個(gè)標(biāo)記過(guò)程,在一定量度或觀測(cè)的基礎(chǔ)上,把待識(shí)模式劃分到各自的模式中去。圖像識(shí)別中運(yùn)用得較多的主要是決策理論和結(jié)構(gòu)方法。決策理論方法的基礎(chǔ)是決策函數(shù),利用它對(duì)模式向量進(jìn)行分類(lèi)識(shí)別,是以定時(shí)描述(如統(tǒng)計(jì)紋理)為基礎(chǔ)的;結(jié)構(gòu)方法的核心是將物體分解成了模式或模式基元,而不同的物體結(jié)構(gòu)有不同的基元串(或稱(chēng)字符串),通過(guò)對(duì)未知物體利用給定的模式基元求出編碼邊界,得到字符串,再根據(jù)字符串判斷它的屬類(lèi)。在特征生成上,很多新算法不斷出現(xiàn),包括基于小波、小波包、分形的特征,以及獨(dú)二分量分析;還有關(guān)子支持向量機(jī),變形模板匹配,線(xiàn)性以及非線(xiàn)性分類(lèi)器的設(shè)計(jì)等都在不斷延展。
3)深度學(xué)習(xí)帶來(lái)的突破
傳統(tǒng)的機(jī)器學(xué)習(xí)在特征提取上主要依靠人來(lái)分析和建立邏輯,而深度學(xué)習(xí)則通過(guò)多層感知機(jī)模擬大腦工作,構(gòu)建深度神經(jīng)網(wǎng)絡(luò)(如卷積神經(jīng)網(wǎng)絡(luò)等)來(lái)學(xué)習(xí)簡(jiǎn)單特征、建立復(fù)雜特征、學(xué)習(xí)映射并輸出,訓(xùn)練過(guò)程中所有層級(jí)都會(huì)被不斷優(yōu)化。在具體的應(yīng)用上,例如自動(dòng)ROI區(qū)域分割;標(biāo)點(diǎn)定位(通過(guò)防真視覺(jué)可靈活檢測(cè)未知瑕疵);從重噪聲圖像重檢測(cè)無(wú)法描述或量化的瑕疵如橘皮瑕疵;分辨玻璃蓋板檢測(cè)中的真假瑕疵等。隨著越來(lái)越多的基于深度學(xué)習(xí)的機(jī)器視覺(jué)軟件推向市場(chǎng)(包括瑞士的vidi,韓國(guó)的SUALAB,香港的應(yīng)科院等),深度學(xué)習(xí)給機(jī)器視覺(jué)的賦能會(huì)越來(lái)越明顯。
4)3d視覺(jué)的發(fā)展
3D視覺(jué)還處于起步階段,許多應(yīng)用程序都在使用3D表面重構(gòu),包括導(dǎo)航、工業(yè)檢測(cè)、逆向工程、測(cè)繪、物體識(shí)別、測(cè)量與分級(jí)等,但精度問(wèn)題限制了3D視覺(jué)在很多場(chǎng)景的應(yīng)用,目前工程上最先鋪開(kāi)的應(yīng)用是物流里的標(biāo)準(zhǔn)件體積測(cè)量,相信未來(lái)這塊潛力巨大。
3.要全面替代人工目檢,機(jī)器視覺(jué)還有諸多難點(diǎn)有待攻破
1)光源與成像:機(jī)器視覺(jué)中優(yōu)質(zhì)的成像是第一步,由于不同材料物體表面反光、折射等問(wèn)題都會(huì)影響被測(cè)物體特征的提取,因此光源與成像可以說(shuō)是機(jī)器視覺(jué)檢測(cè)要攻克的第一個(gè)難關(guān)。比如現(xiàn)在玻璃、反光表面的劃痕檢測(cè)等,很多時(shí)候問(wèn)題都卡在不同缺陷的集成成像上。
2)重噪音中低對(duì)比度圖像中的特征提?。涸谥卦胍舡h(huán)境下,真假瑕疵的鑒別很多時(shí)候較難,這也是很多場(chǎng)景始終存在一定誤檢率的原因,但這塊通過(guò)成像和邊緣特征提取的快速發(fā)展,已經(jīng)在不斷取得各種突破。
3)對(duì)非預(yù)期缺陷的識(shí)別:在應(yīng)用中,往往是給定一些具體的缺陷模式,使用機(jī)器視覺(jué)來(lái)識(shí)別它們到底有沒(méi)有發(fā)生。但經(jīng)常遇到的情況是,許多明顯的缺陷,因?yàn)橹皼](méi)有發(fā)生過(guò),或者發(fā)生的模式過(guò)分多樣,而被漏檢。如果換做是人,雖然在操作流程文件中沒(méi)讓他去檢測(cè)這個(gè)缺陷,但是他會(huì)注意到,從而有較大幾率抓住它,而機(jī)器視覺(jué)在這點(diǎn)上的“智慧”目前還較難突破。
4.機(jī)器視覺(jué)產(chǎn)業(yè)鏈情況
1)上游部件級(jí)市場(chǎng)
主要包括光源、鏡頭、工業(yè)相機(jī)、圖像采集卡、圖像處理軟件等提供商,近幾年智能相機(jī)、工業(yè)相機(jī)、光源和板卡都保持了不低于20%的增速。根據(jù)中國(guó)機(jī)器視覺(jué)產(chǎn)業(yè)聯(lián)盟(CMVU)調(diào)查統(tǒng)計(jì),現(xiàn)在已進(jìn)入中國(guó)的國(guó)際機(jī)器視覺(jué)品牌已近200多家(如康耐視、達(dá)爾薩、堡盟等為代表的核心部件制造商,以基恩士、歐姆龍、松下、邦納、NI等為代表的則同時(shí)涉足機(jī)器視覺(jué)核心部件和系統(tǒng)集成),中國(guó)自有的機(jī)器視覺(jué)品牌也已有100多家(如??怠⑷A睿、盟拓光電、神州視覺(jué)、深圳燦銳、上海方誠(chéng)、上海波創(chuàng)電氣等),機(jī)器視覺(jué)各類(lèi)產(chǎn)品代理商超過(guò)300家(如深圳鴻富視覺(jué)、微視新紀(jì)元、三寶興業(yè)、凌云光、陽(yáng)光視覺(jué)等)。很多國(guó)內(nèi)機(jī)器視覺(jué)的部件市場(chǎng)都是從代理國(guó)外品牌開(kāi)始,很多企業(yè)均與國(guó)外的同行有較好的合作,且這種合作具有一定的排他性,這給潛在進(jìn)入者帶來(lái)了一定的門(mén)檻,因此優(yōu)質(zhì)產(chǎn)品的代理商也都有不錯(cuò)的市場(chǎng)競(jìng)爭(zhēng)力和利潤(rùn)表現(xiàn)。同時(shí),以???、華睿為代表的國(guó)產(chǎn)工業(yè)視覺(jué)核心部件正在快速崛起。
2)中游系統(tǒng)集成和整機(jī)裝備市場(chǎng)
國(guó)內(nèi)中游的系統(tǒng)集成和整機(jī)裝備商有100多家,他們可以給各行業(yè)自動(dòng)化公司提供綜合的機(jī)器視覺(jué)方案,如凌云光、微視新紀(jì)元、嘉恒、凌華、陽(yáng)光視覺(jué)、鼎信、大恒圖像等。由于國(guó)內(nèi)產(chǎn)品與國(guó)際依然有不小差距,很多中游系統(tǒng)集成商和整機(jī)裝備商又是從核心零部件的貿(mào)易做起來(lái)的,因此很多在視覺(jué)產(chǎn)品的選擇方面,依然更為青睞國(guó)外品牌。國(guó)內(nèi)品牌為推廣自己的軟硬件產(chǎn)品,往往需要發(fā)展自己的方案集成能力,才能更好的面對(duì)市場(chǎng)競(jìng)爭(zhēng)。
3)下游應(yīng)用市場(chǎng)
機(jī)器視覺(jué)下游,主要是給終端用戶(hù)提供非標(biāo)自動(dòng)化綜合解決方案的公司,行業(yè)屬性非常強(qiáng),核心競(jìng)爭(zhēng)力是對(duì)行業(yè)和生產(chǎn)的綜合理解和多類(lèi)技術(shù)整合。由于行業(yè)自動(dòng)化的更迭有一定周期性,深受行業(yè)整體升級(jí)速度、出貨量和利潤(rùn)狀況影響,因此近兩年來(lái)看,拉動(dòng)機(jī)器視覺(jué)應(yīng)用普及最主要的還是在電子制造業(yè),其次是汽車(chē)和制藥。
i. 半導(dǎo)體和電子生產(chǎn)行業(yè):從國(guó)內(nèi)機(jī)器視覺(jué)工業(yè)上的應(yīng)用分布來(lái)看,46%都集中在電子及半導(dǎo)體制造行業(yè),包括晶圓加工制造的分類(lèi)切割、PCB檢測(cè)(底片、內(nèi)/外層板、成品外觀終檢等)、SMT貼裝檢測(cè)、LCD全流程的AOI缺陷檢測(cè)、各種3c組件的表面缺陷檢測(cè)、3c產(chǎn)品外觀檢測(cè)等
ii. 汽車(chē):車(chē)身裝配檢測(cè)、零件的幾何尺寸和誤差測(cè)量、表面和內(nèi)部缺陷檢測(cè)、間隙檢測(cè)等
iii. 印刷、包裝檢測(cè):煙草外殼印刷、食品的包裝和印刷、藥品的鋁塑板包裝和印刷等
iv. 農(nóng)業(yè):對(duì)農(nóng)產(chǎn)品的分級(jí)、檢驗(yàn)和分類(lèi)
v. 紡織:對(duì)異纖、云織、經(jīng)疵、緯疵等瑕疵檢測(cè)、織物表面絨毛鑒定、紗線(xiàn)結(jié)構(gòu)分析等等。
5.機(jī)器視覺(jué)系統(tǒng)未來(lái)發(fā)展趨勢(shì)
1)嵌入式解決方案發(fā)展迅猛,智能相機(jī)性能與成本優(yōu)勢(shì)突出,嵌入式PC會(huì)越來(lái)越強(qiáng)大
2)模塊化的通用型軟件平臺(tái)和人工智能軟件平臺(tái)將降低開(kāi)發(fā)人員技術(shù)要求和縮短開(kāi)發(fā)周期
3)3d視覺(jué)將走向更多應(yīng)用場(chǎng)景